## **Quartz microfiber filters**

The GVS quartz microfiber filters are made with pure quartz microfibers and are free of binders or additives of any kind. These filters have retention, loading and air permeability features similar to those of the glass microfiber filters. However, since they have greater chemical resistance at high temperatures, they can be used in environments where extreme conditions are present, replacing the glass microfiber filters in such cases.

#### D0QF1 Standard grade

D0QF2 Very pure filter/very low trace levels of heavy metals

## **Features**

High-purity quartz microfiber filters (SiO<sub>2</sub>) free of binding elements or additives

Excellent retention levels for very fine particles

Very high air permeability

High temperature stability. It is very good up to 900°C, some loss of their usual properties setting in beyond that point

Excellent chemical stability with practically no filtermass losses through chemical reactions under extreme conditions with the presence of acid gases (HCl, SO<sub>2</sub>, SO<sub>3</sub>, H2, SO<sub>4</sub>, NO and NO<sub>3</sub>)

### **Applications**

Determination of suspended particles on the atmosphere

Emissions monitoring in industrial chimneys

Gravimetric determination in gases

Monitoring the level of heavy metals in atmospheric pollution studies

Incinerators

When the temperature of emissions is higher than the temperature that the glass microfiber can beat, it is used quartz microfiber

Analysis of acid gases

Microplastic sample preparation and separation before chromatographic analysis

#### **Technical Specifications**

| Grade | Weight<br>(g/m²) | Thickness<br>(µm) | Retention Dop (*)<br>(%) | Maximum<br>Temperature (°C) | Binder |
|-------|------------------|-------------------|--------------------------|-----------------------------|--------|
| D0QF1 | 85.0             | 440               | 99,998                   | 900                         | NO     |
| D0QF2 | 85.0             | 430               | 99,998                   | 900                         | NO     |

(\*) Retention of a Dyoptil Ophtalate fog with 0.3  $\mu m$  particles

# **Disc and Sheet Membranes**

## **Ordering Information**

| Diameter<br>(mm) | D0QF1            | D0QF2            |
|------------------|------------------|------------------|
|                  | 25 Circles/Box   |                  |
| 25               | FP025D0QF1QUFC01 | -                |
| 37               | FP037D0QF1QUFC01 | -                |
| 47               | FP047D0QF1QUFC01 | FP047D0QF2QUFC01 |
| 50               | FP050D0QF1QUFC01 | FP050D0QF2QUFC01 |
| 55               | FP055D0QF1QUFC01 | FP055D0QF2QUFC01 |
| 70               | FP070D0QF1QUFC01 | -                |
| 90               | FP090D0QF1QUFC01 | FP090D0QF2QUFC01 |
| 110              | FP110D0QF1QUFC01 | -                |
| 125              | FP125D0QF1QUFC01 | -                |
| 150              | FP150D0QF1QUFC01 | FP150D0QF2QUFC01 |
|                  | 100 Sheets/Pack  |                  |
| 203X254          | FP203R0QF1QUFC01 | -                |

## Equivalence Table

| GVS   | Equivalent 1 | Equivalent 2 | Equivalent 3 | Equivalent 4 |
|-------|--------------|--------------|--------------|--------------|
| D0QF1 | QM-A         | QF20         | QF10         | T293         |
| D0QF2 | -            | -            | -            | MK360        |

#### Trace elements in ppm

| Element | D0QF1 | D0QF2 |
|---------|-------|-------|
| Al      | 50    | 25    |
| As      | 0.75  | 0.2   |
| Cd      | 1.5   | <0.02 |
| Со      | 1     | <0.5  |
| Cr      | 5     | 3.5   |
| Cu      | 1.25  | < 1   |

| Element | D0QF1 | DOQF2  |
|---------|-------|--------|
| Fe      | 30    | 20     |
| Hg      | <0.05 | <0.025 |
| Mg      | 25    | 15     |
| Mn      | 1.25  | 1      |
| Na      | 40    | 10     |
| Ni      | 2     | 0.5    |

| Element | D0QF1 | D0QF2 |
|---------|-------|-------|
| Pb      | 0.75  | 0.3   |
| Sb      | 1.25. | <1    |
| Sn      | 0.5   | <0.5  |
| Tl      | 2.5   | 1.5   |
| V       | 0.5   | <0.5  |
| Zn      | 5     | 3     |

